Contents

Part I Three-Dimensional Free-Radical Polymerization. Cross-Linked Polymers

1	Microheterogeneous Mechanism					
	of Three-Dimensional Free-Radical Polymerization					
	1.1 Microheterogeneous Model of Polymerization Process					
	1.2	Polym	nerization Process: Stages of Formation			
		of the	Microheterogeneous Structure for Cross-Linked			
		Polym	ners	5		
		1.2.1	Formation of Polymer Grains at the Initial Stage			
			of Polymerization	5		
		1.2.2	Growth of Polymer Grains During Polymerization	7		
		1.2.3	Accretion of Polymer Grains at the Final Stages			
			of Polymerization	12		
	1.3	Structi	ural and Physical Processes Taking Place During			
		Three-	-Dimensional Free-Radical Polymerization	17		
		1.3.1	Microsyneresis of Liquid Components in Reaction Medium	17		
		1.3.2	Microredistribution of Substances Dissolved			
			in Liquid Components	20		
		1.3.3	Local Glass Transition of Highly Cross-Linked			
			Micro-Volumes of Polymer	23		
	1.4	Micro	heterogeneous Structure of Cross-Linked Polymers	25		
		1.4.1	Interlayers Between Polymer Grains	27		
		1.4.2	Polymer Grains	30		
	Refe	erences		31		
2			atures of Three-Dimensional Free-Radical Polymerization .			
	2.1		c Features of Individual Stages of Polymerization			
		2.1.1	Initial Stage of Polymerization			
		2.1.2	2	41		
	2.2		ted Polymerization			
	2.3		nerization in Solutions			
	2.4	Polym	nerization in Films Under the Conditions of Oxygen Diffusion	54		

x Contents

		•	55
2.5		• 1	66
2.5		•	- -
D.C.		· · · · · · · · · · · · · · · · · · ·	75 70
Refe	erences		78
Livi	ng Cha	in Three-Dimensional Radical Polymerization	81
3.1	Living	g Chains in Free-Radical Polymerization	82
3.2	Imple	mentation of Living Chains Conditions in Three-	
	Dimer	nsional Free-Radical Polymerization	86
	3.2.1	T J	
			87
	3.2.2		
		· · · · · · · · · · · · · · · · · · ·	93
	3.2.3	• • • • • • • • • • • • • • • • • • • •	
		• •	
		•	97
3.3			
D.C		e ,	99
Refe	erences		109
Kin	etic Fea	atures of Three-Dimensional Free-Radical	
Cop	olymer	rization	11
4.1	Kineti	c Features of Three-Dimensional Copolymerization	
			11
4.2			
Refe	erences	1	127
Crit	ical Ca	anyarsian (Cal Paint) in Three Dimensional	
			29
		· · · · · · · · · · · · · · · · · · ·	2)
5.1		· · · · · · · · · · · · · · · · · · ·	31
5.2			-
٥.2	Novel	· · · · · · · · · · · · · · · · · · ·	
		Approach to Calculating Critical Conversion in Three-	33
5.3	Dimer	Approach to Calculating Critical Conversion in Three-nsional Free-Radical Polymerization	133
5.3	Dimer Result	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	
5.3	Dimer Result Three-	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	
5.3	Dimer Result	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	136
5.3	Dimer Result Three- 5.3.1	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	136
5.3	Dimer Result Three-	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	136 136
5.3	Dimer Result Three- 5.3.1	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	136 136
5.3	Dimer Result Three- 5.3.1 5.3.2	Approach to Calculating Critical Conversion in Three- nsional Free-Radical Polymerization	136 136
	3.3 Refe Kine Cop 4.1 4.2 Refe Crit Free 5.1	2.4.2 2.5 Three for Markeferences Living Characteristics 3.1 Living 3.2 Impleating Dimensions 3.2.1 3.2.2 3.2.3 3.3 Living a Tool References Kinetic Feat Copolymer 4.1 Kineting of Oli 4.2 Variate Free-Free-Free-Free-Free-Free-Free-Fre	for Macromolecular Design of Cross-Linked Polymers References Living Chain Three-Dimensional Radical Polymerization 3.1 Living Chains in Free-Radical Polymerization 3.2 Implementation of Living Chains Conditions in Three-Dimensional Free-Radical Polymerization 3.2.1 Copolymerization of Styrene with Dimethacrylates in the Presence of Alkoxyamines 3.2.2 Polymerization of Tri(Ethylene Glycol) Dimethacrylate (tEGdMA) in the Presence of Complex CuBr ₂ with Tetramethyl-Tiuramdisulfide 3.2.3 Polymerization of Dimethacrylates of Poly(Ethylene Glycol)s in the Presence of Complex CuBr with Organic Ligands 3.3 Living Chain Three-Dimensional Free-Radical Polymerization as a Tool for Macromolecular Design of Cross-Linked Polymers References Kinetic Features of Three-Dimensional Free-Radical Copolymerization of Oligomer and Vinyl Monomers 4.1 Kinetic Features of Three-Dimensional Copolymerization of Oligomer and Vinyl Monomers 4.2 Variation of Copolymer Composition During Three-Dimensional Free-Radical Copolymerization of Oligomers and Vinyl Monomer References Critical Conversion (Gel Point) in Three-Dimensional Free-Radical Polymerization

Contents xi

		5.3.4	~
			for Critical Conversion
	5.4	Comp	arison of Results of Theoretical Calculations for Critical
		Conve	rsion with Experimental Data
		5.4.1	Inhibited Polymerization of Dimethacrylates 152
		5.4.2	Copolymerization of Divinyl Benzene (<i>m</i> -DVB)
			with Styrene
	Refe	erences	
6	Pro	nerties	of Cross-Linked Polymers and Copolymers
U			Linked Poly(acrylates). Physical and Mechanical Properties . 157
	0.1		Influence of Chemical Structure of Oligomers upon
		0.1.1	Physical and Mechanical Properties of Cross-Linked
			Poly(acrylates)
		6.1.2	
		0.1.2	Mechanical Properties of Cross-Linked Poly(acrylates) 166
	6.2	Cross.	Linked Copolymers. Physical and Mechanical Properties 172
	0.2	6.2.1	- · · · · · · · · · · · · · · · · · · ·
		0.2.1	into Forced-Elastic State
		6.2.2	Influence of Cyclization on Physical and Mechanical
		0.2.2	Properties of Copolymers
	6.3	Cross.	Linked Copolymers. Thermo-Mechanical Properties
	0.5	6.3.1	- · ·
		0.5.1	State
		6.3.2	Comparison of Transitions into High-Elastic State
		0.5.2	with those into Forced-Elastic State
	6.4	Diffus	ion-Sorption Properties of Copolymers
	KCIC	rences	
			Dimensional Free-Radical Polymerization. Hyper-Branched
Pol	ymer	S	
7	Syn	thesis o	f Hyper-Branched Polymers
	7.1		fication of Reactions for Hyper-Branched Polymer Synthesis . 203
	7.2	Synthe	esis of Hyper-Branched Polymers Via Three-Dimensional
		Free-F	Radical (Co)polymerization with Regulation of Polymer
		Chain	Length
			Regulation of Chain Length Through Initiation
			Rate Variation
		7.2.2	Regulation of Chain Length by Chain Transfer Agents
			and Chain Transfer Catalysts
		7.2.3	Regulation of Chain Length Through the Use of Intrachain
			Reactions of Chain Carrier Radicals
		7.2.4	Regulation of Chain Length Through the Use of Molecular
		7.2.4	Regulation of Chain Length Through the Use of Molecular Oxygen as an Inhibitor

xii Contents

	7.3	Synthesis of Hyper-Branched Polymers Via Living Chains		
		Free-Radical Three-Dimensional Polymerization	231	
		7.3.1 Living Chains Free-Radical Three-Dimensional		
		Polymerization as Reaction for Hyper-Branched		
		Polymers Synthesis	231	
		7.3.2 Living Chains Polymerization of Vinyl Monomers		
		with Diethyldithiocarbamate Groups	233	
	Refe	erences	239	
8	Pro	perties and Application of Hyper-Branched Polymers	243	
	8.1	"Structure-Property" Relationship and Purposeful		
		Generation of Hyper-Branched Polymer Properties		
		That Are in Demand in Practice	244	
	8.2	Hyper-Branched Polymers as Modifiers of Polymeric Materials	248	
	8.3	Major Fields for Hyper-Branched Polymers Application	250	
	8.4	HBP: Main Achievements and Problems to Be Solved Without		
		Delay	253	
	Refe	erences	254	
9	Met	thods for Studying Three-Dimensional Free-Radical		
		ymerization and Cross-Linked Polymers	257	
	9.1	Calorimetry	257	
	9.2	IR Spectroscopy	258	
	9.3	Other Methods of Kinetic Measurements	259	
	9.4	Light Scattering	260	
	9.5	EPR	260	
		9.5.1 Studying the Kinetics of Free-Radical Accumulation		
		in Nonstationary Mode	260	
		9.5.2 Studying the Kinetics of Decay of Accumulated Free		
		Radicals	261	
		9.5.3 Method of Synchronous Comparison of Continuously		
		Recorded Kinetic Curves $[R^{\bullet}] = f_1(t)$ and $W = f_2(t) \dots$	262	
		9.5.4 Structural and Physical Studies Using EPR	262	
	9.6	NMR	263	
	9.7	Physicomechanical and Thermo-Mechanical Methods	263	
	9.8	Volumetric Method		
	9.9	Complex Methods	264	
	Refe	erences	265	
r1			265	